United Kingdom Debt Management Office

Formula for calculating premium / discounts on fixed rate loans

The formulae set out in this document relate to half-yearly loans - formulae for annual loans are available on request.

The following elements are used in the formulae -
$i d=$ discount rate $/ 200$
il = loan rate / 200
$\mathrm{D}=$ days since previous interest payment date
$\mathrm{N}=$ number of half years (or parts of half years) in unexpired period
A1 $=$ Annuity factor for unexpired period at discount rate for unexpired period
A2 $=\underline{\text { Annuity factor for unexpired period at loan rate for unexpired period }}$
PV1 $=$ Present Value of 1 at discount rate for unexpired period $=\frac{1}{A 1}$
Discount rate - this rate is taken from the 'premature repayment' set of rates in force when the repayment is agreed for a loan repayable by the same method over the same remaining term as the loan being repaid.
Loan rate - this is rate payable on the loan being repaid
The formulae for each repayment method are as follows -

Maturity Loans

$$
\left(1+\frac{i d(D)}{182.5}\right)\left(\frac{i l}{A 1}+\mathrm{PV} 1\right)-\left(1+\frac{i l(D)}{182.5}\right)
$$

Equal Instalment of Principal (EIP) Loans

$$
\left(1+\frac{i d(D)}{182.5}\right)\left(\frac{1}{N(A 1)}\left(1-\frac{i l}{i d}\right)+\left(\frac{i l}{i d}\right)\right)-\left(1+\frac{i l(D)}{182.5}\right)
$$

Annuity Loans

$$
\left(1+\frac{i d(D)}{182.5}\right)\left(\frac{A 2}{A 1)}\right)-\left(1+\frac{i l(D)}{182.5}\right)
$$

Note - if the result of the calculation is negative a discount is allowed and if the result is positive a premium is payable. If the discount rate and loan rate are identical then the premium / discount is zero.

Worked example 1 - Maturity Loan

Loan to be repaid on 2 October 2015
Discount rate - 2.24\% (rate determined at 09:30 on 2 October 2015)
Loan rate - 3.14\%
Date of Final Payment - 12 March 2063 (unexpired period - $471 / 2$ years)
Amount to be repaid - $£ 5,000,000.00$
$i d=2.24 / 200=0.0112$
il $=3.14 / 200=0.0157$
$\mathrm{D}=20$ (12 September to 2 October 2015)
$\mathrm{N}=95$ half years
$\mathrm{A} 1=\frac{i d}{1-(1+i d)^{-n}}=\frac{0.0112}{1-(1+0.0112)^{-95}}=\frac{0.0112}{1-0.347119659}=\frac{0.0112}{0.652880341}$
$=0.0171547515$
$\mathrm{PV} 1=(1+i d)^{-n}=(1+0.0112)^{-95}=\mathbf{0} .347119659$

Premium / Discount

$$
\begin{aligned}
& =\left(1+\frac{i d(D)}{182.5}\right)\left(\frac{i l}{A 1}+\mathrm{PV} 1\right)-\left(1+\frac{i l(D)}{182.5}\right) \\
& =\left(1+\frac{0.0112(20)}{182.5}\right)\left(\frac{0.0157}{0.0171547515}+0.347119659\right)-\left(1+\frac{0.0157(20)}{182.5}\right) \\
& =\left(1+\frac{0.224}{182.5}\right)(0.9151983344+0.347119659)-\left(1+\frac{0.314}{182.5}\right) \\
& =(1.00122739726)(1.2623179934)-(1.001720547945) \\
& =1.2638673590-1.0017205480=0.262146811
\end{aligned}
$$

The result is positive, therefore a Premium is payable
$=£ 5,000,000.00$ * $0.262146811=1,310,734.055=£ 1,310,734.06$

Worked example 2 - EIP Loan

Loan to be repaid on 2 October 2015
Discount rate - 1.66\% (rate determined at 09:30 on 2 October 2015)
Loan rate - 2.66\%
Date of Final Payment - 14 September 2035 (unexpired period - 20 years)
Amount to be repaid - $£ 5,000,000.00$
$i d=1.66 / 200=0.0083$
il $=2.66 / 200=0.0133$
D = 18 (14 September to 2 October 2015)
$N=40$ half years

$$
\begin{aligned}
& \mathrm{A} 1= \frac{i d}{1-(1+i d)^{-n}}=\frac{0.0083}{1-(1+0.0083)^{-40}}=\frac{0.0083}{1-0.718471115}=\frac{0.0083}{0.281528885} \\
& \quad=0.0294818771
\end{aligned}
$$

Premium / Discount

$$
\begin{aligned}
& =\left(1+\frac{i d(D)}{182.5}\right)\left(\frac{1}{N(A 1)}\left(1-\frac{i l}{i d}\right)+\left(\frac{i l}{i d}\right)\right)-\left(1+\frac{i l(D)}{182.5}\right) \\
& =\left(1+\frac{0.0083(18)}{182.5}\right)\left(\frac{1}{40(0.0294818771)}\left(1-\frac{0.0133}{0.0083}\right)+\left(\frac{0.0133}{0.0083}\right)\right)-\left(1+\frac{0.0133(18)}{182.5}\right) \\
& =\left(1+\frac{0.1494}{182.5}\right)\left(\frac{1}{1.179275084}\left(1-\frac{0.0133}{0.0083}\right)+\left(\frac{0.0133}{0.0083}\right)\right)-\left(1+\frac{0.2394}{182.5}\right) \\
& =\left(1+\frac{0.1494}{182.5}\right)(0.8479785705(1-1.6024096386)+(1.6024096386)) \\
& \quad \quad-\left(1+\frac{0.2394}{182.5}\right) \\
& =(1.0008186301)((0.8479785705(-0.6024096386)+(1.6024096386)) \\
& \quad \quad-(1.0013117808) \\
& =(1.0008186301)(-0.5108304642+1.6024096386)-(1.0013117808) \\
& =(1.0008186301)(1.0915791744)-(1.0013117808) \\
& =1.0924727740-1.0013117808=0.0911609932
\end{aligned}
$$

The result is positive, therefore a Premium is payable
$=£ 5,000,000.00 * 0.0911609932=455,804.966=£ 455,804.97$

Worked example 3 - Annuity Loan

Loan to be repaid on 2 October 2015
Discount rate - 2.12\% (rate determined at 09:30 on 2 October 2015)
Loan rate - 3.27\%
Date of Final Payment - 10 September 2045 (unexpired period - 30 years)
Amount to be repaid - $£ 5,000,000.00$
$i d=2.12 / 200=0.0106$
il $=3.27 / 200=0.01635$
$\mathrm{D}=22$ (10 September to 2 October 2015)
$\mathrm{N}=60$ half years

$$
\begin{aligned}
& \mathrm{A} 1= \frac{i d}{1-(1+i d)^{-n}}=\frac{0.0106}{1-(1+0.0106)^{-60}}=\frac{0.0106}{1-0.5311807966}=\frac{0.0106}{0.4688192034} \\
& \quad=0.0226099953
\end{aligned}
$$

$\mathrm{A} 2=\frac{i l}{1-(1+i l)^{-n}}=\frac{0.01635}{1-(1+0.01635)^{-60}}=\frac{0.01635}{1-0.3779222919}=\frac{0.01635}{0.6220777081}$

$$
=0.0262828900
$$

Premium / Discount

$$
\begin{aligned}
& =\left(1+\frac{i d(D)}{182.5}\right)\left(\frac{A 2}{A 1}\right)-\left(1+\frac{i l(D)}{182.5}\right) \\
& =\left(1+\frac{0.0106(22)}{182.5}\right)\left(\frac{0.0262828900}{0.0226099953}\right)-\left(1+\frac{0.01635(22)}{182.5}\right) \\
& =\left(1+\frac{0.2332}{182.5}\right)(1.1624456198)-\left(1+\frac{0.3597}{182.5}\right) \\
& =(1+0.0012778082)(1.1624456198)-(1+0.0019709589) \\
& =(1.0012778082)(1.1624456198)-(1.0019709589) \\
& =(1.1639310023)-(1.0019709589)=0.1619600434
\end{aligned}
$$

The result is positive, therefore a Premium is payable
$=£ 5,000,000.00 * 0.0 .1619600434=809,800.217=£ 809,800.22$

