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The DMO’s yield curve model

Introduction

The most commonly used measure of a bond’s return is the gross redemption
yield – the single rate that, if used to discount each of the bond’s cash flows
individually, equates the bond’s total present value to its price in the market.
Implicit in this definition is the assumption that it will be possible to re-invest all
of the bond’s future coupon payments at the current redemption yield - clearly
an unrealistic assumption.  Using redemption yields to discount bond cash
flows has the disadvantage that there is not a unique discount rate for a given
maturity.  Given this, it is more desirable to look at zero-coupon yields.

The zero-coupon rate for a given maturity is the rate at which an individual
cash flow on this future date is discounted to determine its value today and
can be thought of as the yield to maturity of a zero-coupon bond.  The zero-
coupon yield curve is simply the continuous curve of zero-coupon rates.
When calculating the net present value of a bond’s cash flows using the zero-
coupon curve, a different zero-coupon rate is used for each cash flow.  Across
the market, all cash flows on a given date - irrespective of which bond they
originate from - are discounted using the same zero-coupon rate.  This article
examines the method used by the DMO to estimate the zero-coupon gilt yield
curve.

Types of yield curve

Once estimated, the zero-coupon yield curve can be transformed uniquely
into three other curves: the par yield curve, the discount function and the
implied forward rate curve.  Since the zero-coupon yield curve is not
representative of the observed yield on a coupon-paying bond it is sometimes
useful to look at the par yield curve instead.  A coupon-paying bond is said to
be priced at par if its current market price is equal to its face value.

The par yield at a given maturity represents the coupon required on a
(hypothetical) coupon-paying bond of that maturity to ensure that it is trading
at par.  The discount function at a maturity t represents the value today of £1
repayable in t years’ time.  The implied forward rate curve consists of future
one-period interest rates implied from the zero-coupon curve.  It contains the
same information as the zero-coupon curve but, because it is in effect a
marginal curve (whereas the zero-coupon curve gives an average of expected
rates over the chosen horizon), it shows the curve in a more detailed fashion.

Since the zero-coupon curve, par curve, discount function and forward curve
are all unique transformations of each other, if it is possible to obtain or
estimate rates for one of the curves, these rates can be transformed to give
the other curves.

Figure 1 shows the discount function from the DMO’s yield curve model for 31
March 2000 and Figure 2 illustrates the corresponding zero curve, par curve
and implied forward rate curve.



Constructing the yield curve

If a market has liquid zero-coupon government bonds maturing at every future
date, the yields on these could be used to construct the yield curve directly.
With the existence of the UK strips market it is possible to observe the prices
of over 50 traded zero-coupon bonds with maturities at six-month intervals
right across the maturity spectrum.  However, the strips market has grown
slowly since its inception in December 1997 and suffers from low levels of

Figure 1: Discount function for 31 March 2000
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Figure 2: Yield curves for 31 March 2000
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liquidity.  For example, by the end of June 2000 just £2.5 billion nominal (or
2.2%) of strippable gilts were held in stripped form and weekly turnover in gilt
strips averaged around £50 million nominal, compared with around £30,000
million nominal in non-strips.  This low level of liquidity means that the yields
on these securities cannot be relied upon at present for the construction of the
yield curve1.

Instead, the yield curve must be estimated using the prices of coupon-paying
bonds.  This introduces problems of its own.  For instance, conventional gilts
are not equally spaced through the maturity spectrum - there are many “gaps”
over which one needs to interpolate in order to construct a continuous yield
curve.  Also, the technical task of identifying the yield curve is further
complicated by the existence of six-monthly interest payments.

Choice of model

In order to construct a continuous yield curve it is necessary to specify a
functional form for the curve to be fitted to the data.  When deciding which
functional form to use it is important to consider the shapes that the yield
curve should be allowed to take - in other words, what trade-off to make
between the “smoothness” of the curve (removing “noise”, such as pricing
anomalies, from the data) and its “responsiveness” (its flexibility to
accommodate local changes in the shape of the curve).  The purpose to
which the yield curve is to be put is clearly relevant to this decision.

Whilst for macroeconomic analysis it may be desirable to fit a fairly simple
function to the data in order to capture the general shape of the curve, for
most of the analysis performed by the DMO it is important that the yield curve
fits closely to the data, suggesting a more complex functional form.

The yield curve model employed by the DMO was originally developed by
Mark Fisher, Douglas Nychka and David Zervos at the US Federal Reserve
Board2.  In common with many of the academic studies on yield curve
modelling this model uses a cubic spline (or piecewise cubic function) for its
functional form, giving the curve a high degree of flexibility.  Intuitively, a cubic
spline can be thought of as a number of separate cubic functions, joined
“smoothly” at a number of so-called join or knot points.  The greater the
number of knot points the higher the degree of flexibility of the resultant curve.

In addition to specifying the number of knot points it is also necessary to
decide on their location (ie. the maturities at which they should be located).
Although the knots could be distributed evenly over time to maturity it is
common to concentrate them towards the short end to capture the (typically)
greater complexity of the curve at shorter maturities.

                                                       
1 The same is true of Treasury bills.
2 For more details on the “FNZ” model see paper 95-1 in the Federal Reserve Board’s
Finance and Economics Discussion Series “Fitting the term structure of interest rates with
smoothing splines”.



Although much of the early research on yield curves used regression splines,
more recently several studies - including the FNZ paper - have used
smoothing splines.  Whilst for regression splines the number of parameters
(or knot points) must be chosen exogenously, smoothing splines have a
penalty function that penalises excess roughness (ie. oscillatory behaviour) in
the curve and automatically determines the effective number of parameters.
An increase in the penalty reduces the effective number of parameters.  This
means that the model allows the data to determine the appropriate number of
parameters.  In the DMO model, the extent to which the penalty function
reduces oscillations in the fitted yield curve depends on the size of a
parameter which is referred to as the roughness penalty.  If this parameter
was zero there would be no smoothing of the curve and the resulting forward
curve could oscillate wildly.  Alternatively, if it was large, the estimated forward
curve would be inflexible and could be close to a straight line.  The DMO
determines the optimal value of the roughness penalty using a technique
which is referred to as generalised cross validation, which is explained below.

Given a set of observations it is possible to fit numerous alternative curves
through these points.  The “goodness of fit” of each curve can be measured
by taking an observation that was omitted from the estimation and measuring
the difference between this observation and its estimated value implied by the
curve3.  The lower this difference the better the fitted curve.  Since the choice
of observation to omit is arbitrary, cross validation is employed to ensure a
more rigorous approach.  This technique avoids the problem of identifying
which observation to exclude by looping over all the observations in turn,
omitting each one and then fitting a curve.  The differences between the
omitted observations and the curve’s estimated values are squared and
added together to give an overall cross validation “score”.  Different values of
the roughness penalty parameter give different scores, forming a function
referred to as the cross validation function.  The optimal value of the
roughness penalty can then be found by minimising the cross validation
function.  However, fitting forward rate curves while repetitively omitting
different observations makes standard cross validation a computationally
expensive estimation procedure.  Instead, the DMO employs a variant called
generalised cross validation, which formulates the function to be minimised in
a slightly simpler way in order to produce a more efficient solution.

Although generalised cross validation determines the effective number of
parameters used, for a given run of the yield curve it is still necessary to
specify an initial set of parameters from which to construct the optimal set.
Fisher, Nychka and Zervos suggest choosing the number of knot points to be
roughly one third of the sample size.  With their sample size of between 160
and 180 bonds, applying this rule resulted in 50 to 60 knot points.  With the
much smaller number of bonds in the UK market, application of the “one third
rule” means that the DMO’s model currently uses 10 knot points.  The
maturities at which these knots are located are 0, 2, 4, 6, 8, 10, 12, 15, 20 and
40 years.

                                                       
3 It is important that the observation used was not included in the estimation since otherwise
this would lead to biased results.



Another issue when constructing a spline based model is what form to use for
the cubic spline equation itself.  A cubic spline is usually defined to be a linear
combination of underlying component or basis functions.  Care is required
when choosing the form of these component functions of the cubic spline
since not all basis functions are equally capable of producing reliable
estimates of the yield curve.  When fitting the model to the data, some spline
bases can result in inaccuracies arising from calculating the difference
between large numbers.  In keeping with the FNZ model, the DMO solves this
problem by employing a basis of B-splines.  These are functions which are
identically zero over a large portion of the maturity spectrum and thus avoid
the loss of accuracy introduced with other bases.  Whilst for some yield curve
models the function is fitted to the zero-coupon curve, the DMO’s model fits to
the implied forward rate curve.

Separate from the question of how flexible the model should be is the issue of
whether the model should be constrained to produce asymptotically flat
forward rates for long maturities.  The argument for imposing such a
constraint is the view that market participants are unlikely to have different
expectations for the interest rate in 24 years’ time from that in 25 years’ time,
for example.  However, in practice observed yields do trend downwards at the
long end in some markets.  For instance, for several years now the
supply/demand disequilibrium at the long end of the UK market has resulted
in the longest dated gilts trading at a relative price premium (and hence lower
yield) to other gilts.

Another less significant reason why the yield curve might - in practice - slope
downward at the long end is because of the convex nature of long bonds.
The convexity of a bond is a measure of the curvature of its price/yield
relationship (ie. the degree to which the curve defining the relationship
between a change in the bond’s price and its corresponding change in yield
diverges from a straight-line).  In principle, a given bond will fall in price less
than a less convex one when yields rise, and will rise in price more when
yields fall, ie. convexity can be equated with the potential to outperform.
Thus, other things being equal, the higher the convexity of a bond the more
desirable it is to investors, and some investors may be prepared to accept a
bond with a lower yield in order to gain convexity.  Given that the longest
dated gilts are considerably more convex than shorter dated securities this
could lead to them trading at a premium to other gilts.

Again, the purpose to which the yield curve is to be put is relevant to whether
a constraint should be imposed.  Whilst it may be reasonable to impose an
asymptotic constraint if the model is to be used to indicate the underlying
interest rate expectations of market participants, for relative value analysis it is
important that the curve accurately reflects the rates available in the market.
With these factors in mind, the DMO’s yield curve model is not constrained to
flatten at the long end.  Figure 3 compares the implied forward curve obtained
from the DMO model for 25 October 1999 with that from the Svensson



model4.  The latter uses a simple functional form which is constrained to
produce a flat forward curve at long maturities.

Minimising yield or price errors

When fitting the yield curve model, the parameters of the model are estimated
by minimising the errors between actual bond prices and the corresponding
theoretical prices derived from the model.  Minimising price errors sometimes
results in fairly large errors for short maturity bonds since their prices are less
sensitive to movements in yields than for longer maturity bonds5.  The
estimation of the short end of the curve can usually be improved by choosing
the parameters to minimise yield errors instead, although this may lead to a
slight deterioration in the fit of the curve at the long end.  Rather than follow
the original FNZ approach of minimising price errors, the DMO has modified
the model to minimise price errors weighted with respect to the reciprocal of
duration.  Minimising duration-weighted price errors in this way is an
approximation to minimising yield errors.

Tax effects

Tax rules can materially affect the prices of bonds and, if their effects are
ignored in the modelling process, can distort the estimate of the yield curve.
Prior to April 1996, tax-paying investors in the gilt market were taxed on
coupon income, but were exempt from taxation on capital gains.  This led to a
pronounced tax effect in the market as tax-paying investors bid up the prices
of low-coupon bonds relative to high-coupon bonds.  As a result of this, the
                                                       
4 For more details see: Lars Svensson, “Estimating and interpreting forward interest rates:
Sweden 1992-94”, International Monetary Fund Working Paper No.114 (September 1994).
5 For a given change in yield, the price of a short-dated bond will change much less than that
of a longer-dated bond.

Figure 3: Implied forward rate curves for 25 October 1999
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Bank of England - as the former government debt manager in the UK -
employed a complex tax model when estimating the yield curve.

Under the tax regime effective from April 1996 this “coupon effect” largely
disappeared, with just 3½% Funding 1999-2004 and 5½% Treasury Loan
2008-12 being grandfathered under the old regime.  However, the new regime
introduced a distortion of its own, albeit slight compared with that under the
previous system.  This arose because investors in strippable gilts were able to
benefit from delayed tax payments on coupon income relative to those holding
non-strippable bonds.  In order to compensate for this when estimating the
yield curve, the DMO employed a model which calculated, for each coupon of
a given gilt, when the tax would be paid under quarterly accounting (the
system for non-strippable gilts) and when it would be paid if the bond were
strippable.  The present value of the tax payments under both scenarios was
then computed and the difference obtained.

As investors paying the difference between the payments (ie investors in non-
strippable bonds) would have received some tax relief on the earlier payment
which is spread over the life of the bond, the model made a further allowance
for this.  Since the tax treatment between strippable and non-strippable bonds
was harmonised in April 1999 it is now no longer necessary to make a tax
adjustment to the yield curve.

Choice of which bonds to use in the estimation

One of the important issues to consider when modelling the yield curve is
which bonds to use in the estimation.  To produce a meaningful measure of
the government bond yield curve, only government bonds should be used
since only they are normally regarded as being free from default risk.  For
example, the price of a corporate bond will typically be lower than that of a
government bond of identical coupon and maturity, reflecting the credit risk of
the corporate issuer.

In addition to conventional bonds, in many markets government bonds also
exist with embedded optionality or with cash flows which are either linked to
inflation (index-linked bonds) or that are periodically reset (floating rate
securities).  Bonds with embedded optionality give either the issuer or the
holder some discretion to redeem early or to convert to another security.  For
example, several gilts are double-dated, giving the Treasury the option to
redeem the bond at face value at any time between two dates specified at the
time of issue.  The embedded optionality will affect the valuation of such
bonds relative to other bonds in the market.  The extent to which the option
will impact on a bond’s price depends on the market value of the option.
Hence, in order to incorporate callable bonds successfully in the estimation of
the yield curve it is necessary to build in an option pricing model.  The
additional complexity that this gives rise to means that in practice callable
bonds are normally excluded from the yield curve estimation.  This is the
practice followed by the DMO.



Since the return on index-linked bonds is measured in real rather than
nominal terms it is inappropriate to use them in the estimation of the nominal
yield curve.  There is currently only one floating rate bond in the UK market
and since this only provides a measure of very short-term (ie 3 month) interest
rates it too is excluded from the estimation.

Another selection criterion used when deciding which bonds to use in the yield
curve is that of liquidity.  For instance, a curve fitted to prices of bonds that are
so illiquid that they rarely trade (and for which it may be difficult to obtain good
quality prices) runs the risk of being mis-informative.  As a result, illiquid
bonds are often dropped from the estimation process.  The simple proxy that
the DMO uses to build an automatic liquidity criterion into the estimation
procedure is to exclude all stocks of size below a given nominal amount
outstanding.  At present this nominal floor is set at £400 million – the same as
the rump6 threshold currently used by the DMO.  The DMO also excludes
bonds trading when-issued as well as all bonds with less than 3 months to
maturity due to the difficulty of accurately estimating the curve at very short
maturities7.  A full list of the bonds currently used by the DMO to estimate the
yield curve appears in the Appendix.

Uses of the DMO yield curve model

The DMO routinely runs its yield curve program at the end of each day, as
well as occasionally running it on an intra-day basis.  The DMO makes
extensive use of the data from its model.  For instance, the rates at which
public corporations and local authorities can borrow from the Government8

are determined from the par yield curve.  These rates are usually published
once a week, but following large market movements they are re-fixed on a
more frequent basis.

The DMO also uses its model for internal monitoring of the value of individual
bonds relative to the yield curve.  The difference between the actual yield on a
bond and its theoretical yield implied by the yield curve is referred to as the
bond’s cheap/dear residual or its theoretical spread.  On a given day, the
theoretical spread for a bond gives an indication of whether it is trading cheap
(positive spread) or expensive (negative spread) relative to the yield curve.

Figure 4 illustrates the cheap/dear residuals for a range of gilts on a recent
date.  In addition to monitoring the absolute level of cheapness or dearness of
individual bonds the DMO looks at how their cheapness/dearness has
changed over time.  Theoretical prices from the DMO’s yield curve model will
also have a role to play in any reverse auctions that the DMO undertakes.
Reverse auctions will be of a multiple stock format and in order to rank the

                                                       
6 Rump stocks are relatively small gilts (in terms of nominal outstanding), which GEMMs are
not required to make a market in, but for which the DMO will be prepared to make a price if
requested.
7 This is partly due to the fact that a slight inaccuracy in the price can lead to a large yield
error for short-dated bonds.
8 National Loans Fund (NLF) and Public Works Loan Board (PWLB) rates.



bids the DMO will accept stock from the highest relative yields offered (as
measured against the theoretical bond yields from the yield curve).

The DMO also uses its yield curve model when setting the terms for gilt
conversions.  Conversion terms are decided by the DMO, using its yield curve
model to provide a benchmark ratio for the offer.  This benchmark ratio is
calculated by valuing both the source and destination stocks by discounting
each of the cash flows to the conversion date using the forward yield curve on
the date of announcement of the conversion terms.  The DMO then derives
the published conversion ratio from this benchmark ratio by taking some
account of the observed cheap/dear characteristics of the source and
destination bonds.

Figure 4:  Theoretical spreads of bonds against the yield curve
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Appendix: Bonds used to estimate the yield curve as at 30 June 2000

8% TREASURY 2000
10% TREASURY 2001
7% TREASURY 2001
7% TREASURY 2002
9 ¾% TREASURY 2002
8% TREASURY 2003
10% TREASURY 2003
6 ½% TREASURY 2003
5% TREASURY 2004
6 ¾% TREASURY 2004
9 ½% CONVERSION 2005
8 ½% TREASURY 2005
7 ¾% TREASURY 2006
7 ½% TREASURY 2006
8 ½% TREASURY 2007
7 ¼% TREASURY 2007
9% TREASURY 2008
5 ¾% TREASURY 2009
6 ¼% TREASURY 2010
9% CONVERSION 2011
9% TREASURY 2012
8% TREASURY 2013
8% TREASURY 2015
8 ¾% TREASURY 2017
8% TREASURY 2021
6% TREASURY 2028
4 ¼% TREASURY 2032


